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Abstract 

In this note we present analytically proved necessary conditions for the occurrence 
of oscillatory behaviour in an important class of closed isothermal reaction systems. The 
classical Lotka scheme with the uncatalyzed reaction path included and the full Autocatalator 
scheme are chosen as representative examples. 

In this note we present a possible solution to an analytically unsolved problem 
in the investigations of the Leeds group [1-  4] on the closed and isothermal variant 
of  the Autocatalator model. For the sake of  generality, we shall consider the reaction 
system 

P ---) X r = kop, (la) 

a X  + b Y  ~ c Y  r = f ( x ) y  n, c > b, n > 1, ( lb)  

aX ---) (c - b)Y r = g(x) ,  ( lc)  

Y ---) Q r = k2y, ( ld)  

where n is an integer; the func t ions f  and g describing the various reaction rates are 
continuously differentiable for x > 0 and satisfy the following (natural) requirements: 
(a ) f (0)  = 0 and g(0) = 0; (b) f ' (x)  > 0 and g ' ( x )  > 0 i f x  > 0. These conditions imply 
the validity of  the formulas f ( x )  > 0 and g(x)  > 0 if x > 0. Since g can vanish, the 
case when reaction (lc)  is missing is also included. When the reaction vessel is 
closed to matter transport and the temperature is constant, the concentration changes 
of  the key species in the general scheme ( l a ) - ( l d )  are described by the differential 
equations 

x ' ( t )  = koPo e-k°t - a f ( x ( t ) ) y "  ( t )  - a g ( x ( t ) ) ,  (2a) 

y ' ( t )  = (c - b ) f ( x ( t ) ) y "  ( t )  + (c - b ) g ( x ( t ) )  - kzy(t), (2b) 
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the right-hand sides of which are defined for t > O, x(t) > 0 and y(t) > 0. A reaction 
scheme given by eqs. (1) is said to be oscillatory in a closed and isothermal system 
if its differential equations have a solution with many extrema for appropriate 
values of  the parameters. For example, the sets 

and 

{a = b = 1; c = 2; n = 1; f ( x )  = klx; g(x)  = k3x } (3) 

{ a = l ;  b = 2 ;  c = 3 ;  n = 2 ;  f ( x ) = k l x ;  g ( x ) = k 3 x }  (4) 

define two models with the above property, the classical Lotka model [5] with the 
uncatalyzed step included and the full Autocatalator model [1-4] ,  respectively. 
On the basis of  the earlier considerations and numerical calculations concerning 
the Autocatalator [1 -4 ] ,  it is clear that the oscillatory behaviour of  the 
schemes in eqs. (1) crucially depends on the value of the ko/k2 ratio measuring 
the "distance" from the open state of  the given reaction system. However, exact 
bounds for the ko/k2 values necessary for oscillatory behaviour have not yet been 
established in any special case of  eqs. (1) and (2). Because of  the central importance 
of  the Autocatalator-like models, we believe that the following theorem makes a 
contribution to the theory of  oscillations occurring in closed isothermal reaction 
systems. 

THEOREM 

Let (x, y) : [0 ,  fl) --> IR a (0 < 13 _< + ~ )  be a solution of  eqs. (2a) and (2b), with 
x(t) > O, y(t) > 0 for t >  0. 

(a) If x has more than one local extremum, then 

ko/k2 < n (5a) 

(b) 

is valid. 

If y has more than two extrema, then 

ko/k2 < 1 

must be satisfied. 

(5b) 

Equations (5a) and (5b) are necessary conditions for the occurrence of  trains 
of  oscillatory excursions in x and y. When they are satisfied with the sign <<, we 
can say that the depletion of  the reactants is slow and the system is in a "quasi- 
open" state. 

In the proof of the theorem, we shall employ the following lemma inspired 
by ref. [6]: 
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LEMMA 

Let v:  [0, fl) ---) P, and ~: [0, 13) ---) R be differentiable and continuous functions, 
respectively. If the number of zeros of  v in (0,/3) is Z, the function w defined by 

w( t )  = l f ( t )  + ~?(t)lg(t) (6) 

has at least Z -  1 zeros there. 

The proof  is a straightforward generalization of  that given in ref. [6]. 

Having this lemma, we can prove our theorem in an easy way. If we assume 
that x attains more than one local extremum, then x '  has more than one zero in 
(0,/3). A brief calculation yields the formula 

x" ( t )  + [a f ' ( x ( t ) ) y "  (t) + ag ' (x ( t ) )  + ko ]x'(t) = - a ( k o  - n k 2 ) f ( x ( t ) ) y  n (t) 

- a ( c -  b)n f2 (X(t))yZn-1 (t) --a(c--  b ) n f ( x ( t ) ) g ( x ( t ) ) y  "-1 ( t ) -  akog(x(t)) ,  (7) 

the left-hand side of  which vanishes for at least one value of  t according to the 
lemma. If eq. (5a) were not valid, we would obtain a contradiction since the fight- 
hand side of  eq. (7) would be negative for t > 0. Thus, the statement concerning x 
has been proved. 

In order to prove the statement concerning y, we start with the formula 

y" ( t )  + [k2 - (c - b)n f ( x ( t ) ) y  "-1 (t) + a f ' ( x ( t ) ) y  n (t) + ag ' ( x ( t ) ) l y ' ( t )  

= [ f ' ( x ( t ) ) y  n (t) + g ' (x( t ) )]  v( t ) ,  (8) 

where 

v ( t )  = (c - b ) x ' ( t )  + ay ' ( t ) .  (9) 

If  y has more than two local extrema, y '  has more than two zeros in (0, fl) and 
the lemma shows that the left-hand side of  eq. (8) vanishes for at least two values 
of  t. Since the multiplier of  v( t )  on the fight-hand side is positive for t > 0, v must 
also have at least two zeros. By virtue of  the lemma, the left-hand side of  the 
equation 

i t ( t )  + k219(t ) = (c - b)[koPo(k 2 - k o ) e x p ( - k o t ) - a k 2 f ( x ) y  n - a k 2 g ( x ) ]  (10) 

must have at least one zero. If eq. (5b) were not valid, the fight-hand side would 
be negative for t > 0, and this would be a contradiction. Thus, the theorem has been 
completely proved. 
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The accuracy of  eqs. (5) was briefly investigated using the full Autocatalator 
as a reference system. In the case of species X, the numerical solution of the 
corresponding differential equations showed that the bound given by eq. (5a) for 
n = 2 could be lowered by less than 2.5%. In the case of species Y, the same method 
yielded that the bound given by eq. (5b) could be lowered by less than 70%. Taking 
into account the simplicity and generality of our approach, these results are satisfactory. 
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